Wave packet propagation by the Faber polynomial approximation in electrodynamics of passive media
نویسندگان
چکیده
Maxwell’s equations for propagation of electromagnetic waves in dispersive and absorptive (passive) media are represented in the form of the Schrödinger equation i∂Ψ/∂t = HΨ, where H is a linear differential operator (Hamiltonian) acting on a multi-dimensional vector Ψ composed of the electromagnetic fields and auxiliary matter fields describing the medium response. In this representation, the initial value problem is solved by applying the fundamental solution exp(−itH) to the initial field configuration. The Faber polynomial approximation of the fundamental solution is used to develop a numerical algorithm for propagation of broad band wave packets in passive media. The action of the Hamiltonian on the wave function Ψ is approximated by the Fourier grid pseudospectral method. The algorithm is global in time, meaning that the entire propagation can be carried out in just a few time steps. A typical time step is much larger than that in finite differencing schemes, ∆tF ≫ ‖H‖−1. The accuracy and stability of the algorithm is analyzed. The Faber propagation method is compared with the Lanczos-Arnoldi propagation method with an example of scattering of broad band laser pulses on a periodic grating made of a dielectric whose dispersive properties are described by the Rocard-Powels-Debye model. The Faber algorithm is shown to be more efficient. The Courant limit for time stepping, ∆tC ∼ ‖H‖−1, is exceeded at least in 3000 times in the Faber propagation scheme. email: [email protected] email: [email protected]
منابع مشابه
Plane Wave Propagation Through a Planer Slab
An approximation technique is considered for computing transmission and reflection coefficients for propagation of an elastic pulse through a planar slab of finite width. The propagation of elastic pulse through a planar slab is derived from first principles using straightforward time-dependent method. The paper ends with calculations of enhancement factor for the elastic plane wave and it is s...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملPLANE WAVE PROPAGATION THROUGH A PLANER SLAB
An approximation technique is considered for computing transmission and reflection coefficients for plane waves propagating through stratified slabs. The propagation of elastic pulse through a planar slab is derived from first principles using straightforward time-dependent method. The paper ends with calculations of enhancement factor for the elastic plane wave and it is shown that it depends ...
متن کاملFaber polynomial coefficient estimates for bi-univalent functions defined by subordinations
A function is said to be bi-univalent on the open unit disk D if both the function and its inverse are univalent in D. Not much is known about the behavior of the classes of bi-univalent functions let alone about their coefficients. In this paper we use the Faber polynomial expansions to find coefficient estimates for four well-known classes of bi-univalent functions which are defined by subord...
متن کاملWave propagation in axion electrodynamics
In this paper, the axion contribution to the electromagnetic wave propagation is studied. First we show how the axion electrodynamics model can be embedded into a premetric formalism of Maxwell electrodynamics. In this formalism, the axion field is not an arbitrary added Chern-Simon term of the Lagrangian, but emerges in a natural way as an irreducible part of a general constitutive tensor. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 216 شماره
صفحات -
تاریخ انتشار 2006